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Nash Equilibrium in a Duopolistic Electricity Market

Masahiro Ishii*

Abstract
In this paper, we show a necessary and sufficient condition for the existence of Nash equilibrium in a non-
cooperative game that describes a duopolistic electricity market. We also prove that the equilibrium is unique
under the condition. Though the function we introduce for this purpose is defined implicitly, its inverse function
has an explicit form as the sum of elementary functions. Basic properties of these functions are derived,and our

main results are obtained with them.

1. Introduction

Recent studies of electricity markets can be classified into two major categories: those that investigate the
structure of market power and those that analyze the properties of spot electricity price processes.

Research on market power is mainly based on oligopoly equilibrium models that explicitly describe the
strategic behavior of energy suppliers. Some representative models are the supply function approach and the
Cournot model. The supply function approach is an equilibrium pricing model where each firm can strategically
offer its supply curve. This approach is based on Klemperer and Mayer [13] and has informed a series of papers
that analyze electricity markets, the most well-known being Green and Newbery [4] and Newbery [16]. Green
and Newbery [4] use a numerical model based on a supply function model to examine market power and the
effect of entry in the British spot electricity market. Newbery [16] develops an extended supply function model
that includes a spot market and contestable entry. On the other hand, Borenstein and Bushnell [2] present
important factors that determine the impact of market power by using simulations based on a Cournot model.

Most empirical studies of the properties of spot electricity price movements, especially spikes, use stochastic
processes (for example, Johnson and Barz [12], Barlow [1], Davison et al.[3], Huisman and Mahieu [7], Hadsell
et al.[5], Hadsell and Shawky [6], Mount et al.[15], and Kanamura and Ohashi [14]).

Although the above two themes are connected, little attention has been paid to the relationship between
market power and features of spot electricity price fluctuations. To examine this connection, Tezuka and
Ishii [17] and Ishii [8] constructed another framework modeling the strategic behavior of various power
producers. There are two notable advantages to this approach. First, it is comparatively easy to apply a wide
variety of demand distributions, whereas the supply function approach is not tractable because of its complexity,
and secondly, it covers many types of power generating firms. Nash equilibria within this framework are derived
in Tezuka and Ishii [18], Ishii [9], Ishii and Tezuka [10], and Ishii and Tezuka [11].

In this study, we examine the existence of Nash equilibria in a non-cooperative game model, which is
one aspect of this framework. The rest of this paper is organized as follows. In Section 2, we introduce an
asymmetric duopolistic electricity market game model. In Section 3, we provide a necessary and sufficient

condition for the existence of a Nash equilibrium in the game, and show that the equilibrium is unique. Section 4
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summarizes our findings and concludes the paper.

2. Model

In this section, we describe our assumptions and the notation used in this paper. We assume a duopolistic spot
electricity market, so there are two power generating firms and many perfectly competitive retailers. Thus only
two power generating firms supply electricity to the market, and all retailers buy from them. Each retailer has to
buy electricity in the market to supply power to their customers.

For a one-period model, we call the beginning of the period time zero and the end of the period time one. At
time zero, each power producer selects and offers a supply function strategically under uncertain demand,
and the market maker adds individual supply functions to construct a market supply function. At time one, the
quantity of demand will be realized, and the market maker will decide on a spot price with the market supply
function and the realized demand. We note that it is easy to extend our approach to a multi-period model by the
method described in Ishii [8].

Let (Q,F, P) be a probability space. As the total electricity demand, which is realized only at time one, is
not foreseeable, it is modeled as a non-negative continuous random variable Y. On the other hand, all market
participants know the probability distribution of Y at time zero.

Suppose that ¢, and a, are positive constants, and b, <b,. Forj =1, 2, we set

[ =e% b forx € [0, »),
and
(oX€) ='/;xfj(u)du = ;T(e“f“bf —ebf) forx [0, ), €))

where f; is the marginal cost function of power generating firm j and C; is the cost function. Without loss of
generality, we assume that the fixed cost is 0 for every firm. It is said that a typical generator’s supply curve
looks like a hockey stick, that is, the curve has a slight upward slope (or remains flat) until the generation
capacity limit is reached, and then it jumps to infinity above the maximum output level. Since such functions
make the model very complicated, it becomes difficult to derive equilibria. However, we can adjust @, and b; to
produce various curves similar to hockey sticks, and then use exponential functions for the individual marginal
cost functions.
We define g;: [0, «)* = [0, ) by
g,(r, A;)=e%*+bi+hi for (x, A;) € [0, )%
The economic interpretation of the function g; is as follows. We view every 4, < [0, ®) as a strategy of power
producer j. With the distribution of Y and information about the other power producer’s strategy, power producer
J selects a strategy A;, and bids his/her supply function g; (x, A ]-) at time zero. The expression ¢4 — 1 can be
interpreted as a rate of increase in the offered price.
In addition, g; (x, A;) has the inverse function for any 1; € [0, ). We define g, (z, 1,) as follows:
0 forz € [0, e+
g1 (2, 4;) ={logz—b;— A; (2

forz € (ebi+4i, 00)’
aj

We point out that the output is zero for each spot price z < e+ 4.
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Given any strategy vector A = (,, 1,) € [0, »)? we put
GG A):=g1@G2A) +g, ')

0 forz € [0, ,milnz(eb”ﬁi)}
i=1,

logz =brca, 2= Arcay 2y
_ 1A b As forze(min(ebﬁli),I,naX(eb"*l")},
Ay, Ay i=12 i=12
(a,+a)logz —a,(b,+ 2,) —a,(b,+ 1)

a.a,

o e, ®
=1,

where

1 forb, + A,<b,+ 1,

2 forb, + A, >b, + A,

We will refer to G (z, 1) as the marketwide supply curve when the strategies of power producers 1 and 2 are 1,
and A,, respectively.

B(Ay, 1) ={

Let y>0 be the realized electricity demand that all market participants observe at time one. The market
maker solves the equation G (z, 1) =y for z to set the quoted electricity spot price that balances the total supply

with the total demand y. It is easy to show that a unique solution exists. Denoting the solution by ¢ (y, 1), we
have

o (y, 1)
LTI Ytbp gy At Xk(/hy A2 for Y (O, |b1+ 11 - (bz+ AZ) |:|,
= ARy, 2y '
{alaz y+a,(b,+ 2,) +a,(b,+ 21)} <|b1+ A= (b4 2, | )
exp fory € , ©
ata, @iy 2y @
Substituting (4) into (2) gives
gl_1 (¢ (yr X)r }{1>
b+ A= (b,+ A,
0 forye {0, ;(ZZ)},
a,
and b+ A, >b,+ 1,
by Ay— (b + A
={y forye [0,—2 .= (b 11,
a;
andb,+ A, < b,+ 1,
a,y— b+ A1)+, + 2, <|b1+ A= (bt 2y | )
fory e , ©
ata, Wy 1y ®)

with g, (¢ (y, 1), A,) being expressed similarly. g,"'(¢ (y, 1), 1)) denotes the supply of power producer j
when the spot price at time one is ¢ (y, 1).
From (1), (4) and (5), we define
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Fi(y, M) :=9(y,s) g, o (y, 1), 1) -C,(g, oy, 1),1))

1 1 byt Ay— (b + A
e@ythit Ay (y——e”11>+—ebl for 0 < ysw andb,+ 4, <b,+ 1,
a, a, a,
{a1a2y+a1(b2+ ) +a,(b,+ Al)}{azy—(b1+ A)+b+2A, 1 } 1
Xp -——e M p+—
_ ata, a,ta, a, a,
b+ A= (b,+ A, 6
for y - 1t = Gt A | ®
A2y, 2y
b+ A= (b, + A
0 for 0 <ys;(22)andbl+ A zb,+ 2,
a,

which represents the profit of producer 1 at time one. We can also define and calculate F,(y, A ) in the same

manner.

3. Nash Equilibrium

In this section, we introduce a non-cooperative game that the two power generators are faced with. We then
consider properties of a certain function that plays an important role in finding Nash equilibria in the game.

Let a = (0, 1), and suppose the following non-cooperative game. For eachj = 1, 2,

{the strategy set for player j is [0,%), %)

the payoff to playerjis inf{u € R | P (F; (v, 1) <u) = a}.

In the above non-cooperative game, producers 1 and 2 are the players, and each strategically chooses a bid
supply curve to maximize the a-quantile of his/her profit distribution given the probability distribution of total
demand Y at time zero.

Lemma 1
Under the conditions given in Section 2, forj = 1, 2 and all A € 0,%)?, we obtain
inf{fu e R|PF (v, ) <u)=a}=F (y, 1), €©)
where y,denotes the a-quantile of Y.
This lemma is verified in Ishii [8].
Now consider the following equation in one unknown x:
$,% + S, =S4, )

wheres, >0, s, € R, ands; > 0.

Lemma 2
For Vs, > 0, Vs, € R, and Vs, > 0, equation (9) has a unique solution.
Proor. Leth (x) =s,x +s,—s;¢* Since

dh

— &) =s,+s,e >0 forx €R,

dx
h is a strictly increasing function. In addition, xlgnwh(x) = o and lim } (x) = —oo. Hence there exists a unique
solution satisfying i (x) = 0. We denote the solution by £ (s, s, s,). O

The function £ is used to derive Nash equilibria in the non-cooperative game (7), so we will derive some
properties of £.
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From equation (9), we have the following lemmas.

Lemma 3

£ (s, 8, 85 > 0if and only if 5, < s,

Lemma 4
The function & is strictly decreasing with respect to s,, and is strictly increasing with respect to s,.

PROOF. By the implicit function theorem, the first partial derivatives of & are

& 1
_(sl,s2y33) = - < 0,
ds, Syt s3e7F SrS2 8y
9 E - EGusasy
—$, S, S =— >
883 ( =2 3) s+ Sse—f (81,89,83) ’
from which the desired results are obtained. O

We now put &, and &, as follows:

a a,(a,y+b,—b,+u)
El(u)=&‘< LI YT D +1,1) foru € R,
a,+a, a,ta,
a a,(a,y—b, +b,+u)
£, = E( 2 BRY TR +1,1) foru € R.
a,+a, a,+a,

Some remarks about &; are necessary here to avoid misunderstanding and confusion. Strictly speaking, &;
depends on not only % but also a;, @,, b, b, and y. For convenience, the expression &;(u) is used in this paper. In

the two theorems as stated below, a value y, is assigned to the variable yin ;.

Lemma 5
For eachj = 1, 2, &;is a strictly increasing convex function, and the first derivative is less than 1.
Proor. Using Lemma 4, the definition of &, and the chain rule, we have that

dél(u):a_f a, _al(a1y+b1—b2+u)+1 ) -1
du 0s, \ ay+a, a,+a, ") a,ta,
1
1+ a1+a2 e~ E1w
a,

3
It is clear that 0 < d—l (u) < 1,and so &, is strictly increasing. Since the second derivative of £, is
u

a,+a, _
dzgl 1‘lee e
W) = >0,
du’ Gtay g’
{14872 00}

then &, is convex. For &,, we can show the result similarly. |
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Lemma 6

The inverses of £, and &, are

+
E W) =v—C(a,y+b,—b,) + LT (1—e?) forv € R,
ay
a,+ta,
£, 'w) =v—(a,y—0b,+b,) + (1-e?) forv € R.
a,

PRrROOF. It is apparent that the image set of &, is R. So by Lemma 5, the inverse of &, exists and its domain is
R. We also have
a,+a,

EE, ) = E,(w)—(a,y+b,—b,) + p; (1—e 51®)
1
_ata { a, £.G)— a,(a,y+b,—b,+u) . 1—e*51<”)} iy
a, a,ta, a,ta,
=u.
The proof for &, is straightforward. O

We also note that £,71(0) = —(a,y+b,—b,) <0, sothat £,(0) > 0.

Lemma 7
Fixy>0and 2, = 0.If —a,y —b, +b,+ 1, = £E,(1,), then A,= —a,y—b, +b,+ 1, is the unique maximum
point for F, (y, 2 ). Otherwise, F, (y, ) is maximized uniquely at 1, = £,(2,).

Proor. By (6) and —a,y—b, +b,+ 1, < —b, +b,+ A, < a,y—b, +b,+ 1,

b
ye"ly”’l*ﬂl—e—1 (emv—-1) for0 < A,< —a,y—b,+b,+ A,
a;
a,a,y+a,(b,+ 1) +a,b+ 2D [a,y— b+ A1) +b,+ 2, 1 1
exp BTV S Y )
F (y )= ata, a+a, @ @ 10

for —a,y—b,+b,+ 1, < A, <a,y-b,+b,+ A,

0 fora,y—b,+b,+ 1,< 2,

For A, € (—a,y—b, +b,+ A, ay,y—b, +b,+ 1,],

0 1 a,a,y+a,(b,+ A,) +a,b,+ 1)
— F(y )= exp
A, a,+a, a,+a,
ot gy bt
a,+a, a,+a,

Here,
>0 for A,< £,(1,)

1+e-4{=0 for ,= &,(1,).

<0 for 1,> £,(1,)
Then 1, = £,(1,) is the unique maximizer when —a, y —b, +b,+ 4, < £,(1,) <a,y—b, +b,+ 1,, so we
have to check that this holds. As it is apparent that a,y —b, +b,+ 1 ,> 0, Lemma 3 gives us

& At az(azy—b1+b2+lz)_

a+a, a+a,
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a, y—b,+b,+ 1,>0
a,(a, y—b,+b,+ 1,) N
a,+a,
=£,(2,)>0.
By substituting 4, = @,y —b, +b,+ A4, for the above partial derivative,
0
ok,
From the above inequalities,
0< £,(1,) <ayy—b,+b,+ A,
Therefore, A, = —a, y—b, +b,+ 1, is the unique maximum point for ,(y, 1 ) when —a, y—b, +b,+ 1, = £,

1<1

1
Fl(y’)’) = ed2y+b2+ﬂz{_1+e_gzy+b1—b2_/‘{2}<O'
Ay=ayy—b+by+ A, a,ta,

(2,), and otherwise F,(y, A ) is maximized uniquely at 1, = £,(1,). |

Lemma 8
Fixy>0and 1, =0.
D fay+b+A,—b,<0,F,(y A) =0forany 1, € [0,).
(D) Ifa,y + b,+ A, — b, > 0, the unique maximum point for F,(y, 1) is
{Azz —a,y+b+21,—b, for—a,y+b+1,—b,=E (1),
Ay=E,(2)D for —a,y + b+ 2, —b, < E,(AD.

Proor. By (6) and —a,y +b,+ A, —b,<b+ A, —b,<a,y+b,+ 21, — b,

b
ye“zy*bz*’lz—e—z(eazy—l) for0 < A,< -a,y-b,+ A,-b,
a,
aya,y+a;(by+ A, +a, b+ 2D [ayy— 0+ A)+b+ 1, 1 1
Xp ——e Pt el
F,(y 2)= a,t+a, a,t+a, a, a, 1)

for —a,y+b,+ A, -b,< A,<a,y+b,+ 1,-b,

0 fora,y+b,+ A, -b,< 2,

Thena,y + b,+ A, — b, < 0 implies F,(y, 1) = 0 forany 1, € [0,%). As in the proof of Lemma 7, we have
ay+b+1,—-b,>0=E,(1)>0,
from which we can show (ii). O

Lemma 9
()If0<ay<l,
—a,y—-b+ b+, = E,(A,) = 1,=—log (—a,y+D+a,y+b, — b,
Gi) Tfay,y = 1,
—a,y—b+ b+ A, < £,(1,) forany 1, € [0,%).
(i) f0 < a,y < 1,
—ay,y+t b+ A, —b,= E(2 )= 1, = —log (—a,y +1) + a,y—b,+b,.
G(v) Ifa,y =1,
—a,y+ b+ A, —b,< E,(1) forany 1, € [0,00).
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ProoF. Under the assumption that 0 < a,y < 1, we have by the definition of &, that
—a,y—b+b,+ 1,= E,(1,)
L4 (—a,y-b+b,+ 1,) 4 (@, y-b,+b,+ 1,)  1mg -yttt 2)
a,t+a, a,t+a,

S g, y+1 = eavthi=b Ay

=2, —log(-a, y+1) +a,y+b,— b,
Thus (i) is obtained, and (iii) can be proved similarly.

Now suppose @,y = 1. For each 2, € [0,%),

—a,y+1 <0 < e@ytbi=by=25
Therefore

—a,y —b+b,+ 1,<E,(1,),
and so (ii) is obtained. The proof of (iv) is similar.

We now let S; be the best response set of player ; for each; = 1, 2.

Theorem 1
The best response set of each player is derived as follows.
(1) If0<a,ya <1,0<a,ya <1,and —log (—a,ya +1) +a,ya + b,—b, <0, then
S, = {(=ayya—b, +b,+ Ay Ay)| 2,20},
S,={(1, 2)|0< A, <—-a,ya—b,+b, 2,=0}
U{(A, E,(A D) | —ayya—b,+b,< A, <—log (—a,ya+D+a,ya—b, +b,}
UL, —a,ya+b,+ A,—b,) | —log (—a,ya+D+a,ya—b,+b,< 2 ,}.
(i) If0<a,ya<1,0<a,ya<land —log(—a,ya+ D +a,ya+b, —b,>0,then
S, ={(E,(2,), 10, < —log(—a,ya+D+a,ya+b,—b,}
U{(=a,ya—=b,+b,+ 2y 2,)|—log (—a,ya+D+a,ya+b, —b,< 2,}
S,={(A,21)]0<2A,<—-a,ya—b,+b, 1,0}
UL, EA D) | —a,ya—b+b,< A <—log (—a,ya+1)+a,ya —b,+ b, A,=0}
UL, —a,ya+b,+ A, —b)|—log(—a,ya+D+a,ya—b+b,< A ,}.
GiD) fa,ya=1,0<a,ya < 1and —log(—a,ya+ 1D +a,ya+b, — b, <0, then
S, ={(=a,ya—b,+by+ 1, 2,)| 1,=0},
Sy={( Ay AD|0S A < —aya—bi+by A, =0y U{(A, E,(1))|~a,ya—b+by< 1.}
(v) Ifa,ya=1,0 <a,ya <1land —log(—a,ya+1) +a,ya+b, —b,>0,then
S, ={(E,(2,), 101, < —log(—a,ya+D+a,ya+b,—b,}
U{(=a,ya—b,+ b+ 2y A,) | —log(—a,ya+ D+a,ya+b, —b,<2,},
S,={(A, A)[0= A, < —ayya—b,+b, 1,=203U{(A,, E,(X D)) |—a,ya—b,+b,< X, 2, =0}.
(V) If0<a,ya<landa,ye=1,then
S, ={(E,(2,), 2,)|0=<1,},
S,={(A,1)]0<2A,<—a,ya—b,+by, 1,=0}
UL, EA D) |—a,ya—b+b,< A, <—log(—a,ya+1) +a,ya—b,+b, A,>0}
UL, —a,ya+b,+ A ,—b,)|—log(—a,ya+D+a,ya—b,+b,< 21 ,}.
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(vi) Ifa,ya=1anda,yq = 1, then
S, ={(E,(1), 1,)[0=21,},
S, ={(A, A)|0= A, <= —a,ya—b+by 2,20 U{(A, E,(A D) |—a,ya—b+b,< A, A, =0}.

Proor. (1) : From the assumption that —log(—a,yo +1)+ a,ya + b, — b, < 0, we have

—log(—a,ya+D+ a,ya+b, — b, < 1,
By this inequality and 0 < @,yq < 1, Lemma 9 (i) gives us

—a,ya—b+b,+2,=E,(21,).
Lemma 7 implies that F,(y«, A ) has a unique maximum at A ,= —a, ya — b,+ b,+ 2, and so S, is represented
above.

It is apparent that 0 < —log(—a,ya+1) < —a,ya— b,+ b,. Then, if 0 < 1, < —a,y — b,+ b,, Lemma 8 (i)

gives us

F,(ya,2) =0 for 2, € [0,%).
By Lemma 9 Gii), —a,ya— b,+ b, <1, < —log(—a,ya+1D+ a,ya— b,+ b, leads to —a,ya+ b, + 1, — b,
< &,(A,). Then, by Lemma 8 (ii), F,(yqa, A) is uniquely maximized at A, = £,( 1 ). Similarly, F,(yq, 1)
is uniquely maximized at 1, = —a,yqa+ b, + A ,— b,for 1, = —log(—a,ya+1) + a,ya — b,+ b,. Thus S, is
derived as above.
(i) : Forany 24, € [0, —log(—a,ya+ D+ a,ya+ b, — b,),

—a,ya—by+b,+1,<E,(1,)
from 0 < a,ya < 1 and Lemma 9 (i). By Lemma 7, F,(yqa, A ) is uniquely maximized at 1, = £,( 1,). For any
A, = —log(—a,ya+ D+ a,ya+ b, — b,, we get similarly that F,(y«, 1) is uniquely maximized at
A, =—a,ya— b+ b,+ A, Hence S, is obtained, and S, is derived similarly to (i).
(iii) : S, is derived as in (). Froma, yq = 1 and Lemma 9 (iv), we have that

—ayya+b, + L, —b, <&, (L) for 2,=0.
Then 4, = £,( 1) is the unique maximum point for F,(yq, 4 ), and S, is obtained.
(iv) : In this case, we can derive S, and S, as in (i) and (iii) respectively.
(v) :Froma,yq = 1and Lemma 9 Gi),

—a,ya—by+ by, + 2, <E,(1,) for 1,=0.
Recall that F,(yq, A ) has a unique maximum at 1, = £,( 1,) by Lemma 7. Thus we have S,. The proof for S, is
handled as in ().

(vi) : S, and S, are verified in a similar way to (v) and (iii), respectively. O
Lemma 10
If 0 < a,y < 1, we have following two inequalities:
£,(00 < —log(—a,y+ D+ ayy — b,+ b, 12)
£,(—log(—a,y+ 1)) < —log(—a,y + D+ a,y — b,+ b, 13

Proor. Inequality (12) is shown as follows.

, o (@,y—by+b,)
i {—log(—a1y+1)+azy—b1+bz}—w+1

a,t+a, a,ta,

M.ﬂ > 1> e~ {-logl-ayy+D +a,y—b,+b;}

a,+a,
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So from the definition of &,,

£,(0=¢ & , = % (, y_b1+b2)+1, 1) < -log(-a,y+1)+a,y—b,+b,.
a,+a, a,+a,
Inequality (13) is derived similarly. m|
Lemma 11
If0 <a,y < land —log(—a,y + D+ a,y+ b, — b, >0,
£, (log(—a,y + D) < —log(—a,y + D+ a,y + b, — b, 14

The proof is essentially the same as the proof of Lemma 10.

Lemma 12
Consider the following system of equations in two unknowns v; and v, :
v, =£,@,)
{vz =&, (15

1 1
(i) Ify = —+ — , then (15) is inconsistent.
a, a

1 1
(i) Hfy<—+— and1 —a,y > e@ytbi=b: then (15) cannot have a solution in [0,0)°,
a, a,

1 1
Gi) fy<—+— and1 —a,y < e@¥*+b1-02 then (15) has a unique solution in [0,0)°.
a, G

Proor. It is apparent that the original system has exactly the same solutions as

+
v,=&,1@,) =v,— (@, y+b,-b,) +ala %2 (1—et2)
1
a,+a, '
Vy,= 5271(1)1) =0,— (az y_bl +b2) + (1_6701)
a, (16)

This enables us to show the desired results by (16).
Define [, I, : R — R as follows:

a,+a
L) =u+a,y+b,—b,———,
a,
a,ta
L) =u+a,y—b, +b,————.
a,
The inverses of these functions are
a,ta,
1,71(w) =v—(a,y+b, —b,) +——,
a,
a,+a
1, 1) =v—(a,y—b, +b,) +———.
a,

By Lemma 6, ;~" is an asymptote of £;7" forj = 1, 2. Since
') >&;7'@w) forv € R,

we have
Liw) <&jw) foru € R.
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1
(i) : Rearranging y = — + — , we get.
a Gy
a,+a a,+a
—(a,y — b, +b) + ——<a,y+b,—b,———.
a, a,
This implies
a,ta
E, 1) <, Y w)=v—(a,y—b, +b,) + %
2
a,ta,
<v+a,y+b, —b,—
a;
=L)< & .
Thus we conclude that the system (16) has no solution.
. . 1 1
(ii) : Asin (i), we have from y < — + — that
a; 4
L") >1,(w) foru € R.
The inequality 1 — @,y > e % ¥+b1= implies that
0<a,y<landa,y+ b,—b,<0.
In addition
1—a,y>enytbi-bs
a,+a,

(1 _ ea1y+b1—b2) >0

—(a,y+b,-b,) —(a,y—b,+b,) +
a,

E,1CEH0)) > 0.
On the other hand, from (17)
£,71(0) = —(a,y + b,— b, >0,

so that

{u=08w =20t ={u|u=-(a,y+b—0b)}
We have by Lemma 5 that

df, (uw) <1 foru € R,

du
and by Lemma 6 that

a,+a,

d
— £, w=1+ e *>1, foru € R.
du

a,
So combining (18), (19), (20) and (21), we get
E, ) > E,(w) foru = —(a,y+b,—b,).
Thus there is no solution in [0,00)2.
(iii) : As stated in the proof of (ii),
L) > 1, () for Vu € R.
So there exists #, € R such that
u>u,=~ E,7w) > E,(w).

an

18)

19

(20)

21)

(22)
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Recall that £,(0) is the unique solution to the equation

o @ (a, y+b1—bz)+1:e_x‘

a,t+a, a,ta,
By substituting £,71(0) = — (@, y— b,+b,) on the left hand side, we get
a, (a, y+b,-b,)

% £,7100) - +1= —a,y+ 1<ea2y—b1+b2=e—fz’l(0)’
a,+a, a,+a,
that is,
£,710) < £,(0). (23)
Because of (22) and (23), we conclude that the system (16) has a solution in [0,%0)2. Furthermore, (20) and
(21) imply that this solution must be unique. O
Theorem 2

1 1
The non-cooperative game (7) has Nash equilibrium if and only if yq <7+ —. Furthermore, when the

oge o . o . . . 1 2
equilibrium exists, it is unique and non-negative.

Proor. For each case in Theorem 1, we examine the existence of the Nash equilibrium.
(1): Suppose that 0 < a,y,< 1,0 < a,y,< 1, and —log(— a,y,+ 1)+ a,y,+ b, — b, < 0. It is apparent that
0< —log(—a,y,+1 < —a,y,— b, + b,and &,(—a,y,— b, + b,) = 0. Since the first derivative of £, is less
than 1 from Lemma 5, we have that

S, NS, ={(=a,y,— b, +b, O}
(ii): Next we assume that 0 < ¢,y,< 1,0 < a,y,< 1 and —log(-a,y,+ 1) +a,y,+ b, — b, > 0. From the
third inequality and Lemma 9 (i),

—a,y,— b, +b, < £,(0), Ly
so that

0= &,(-a,y,— b, +b) < £,(&,(00).
Then

E,UEL0) =0< £,(5,(0). (25)
Lemma 10 gives us that

£,00 < —-log(-a,y, + D +a,y,— b, + b, (26)
and

£, (=log(~a,y,+ 1) +ayy,— b, +b,)

—~log(—a,y,+ D

£,1(E,(~log(~a,y,+ 1))

< &, (~log(—a,y,+ 1D + a,y,— b, +b,). @7

Because of Lemma 11,
£ (<log(-a,y,+ 1)) < —log(—a,y,+1) +a,y,+ b, —b,= £, (=log(—a,y,+ 1). (28
Applying (24), (25), (26), (27) and (28), we deduce that there exists a unique
A* e (£,(0), min(-log (—ayy,+ 1), —log(—a,y,+ 1) + a,y,— b, + b,)), which satisfies £,(1,*)
= £,71(A ™). Putting 1,* = &,(1,*), we conclude that
S, NS, ={(2,% 2,
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(iii): From the assumptions that ¢, y,> 1,0 < a,y,< 1 and —log(—a,y,+ 1) + a,y,+ b, — b, < 0, we can
prove that
S NS, ={(=a,y,— b, +b,0)}
asin (i).
(iv): We suppose thata,y,> 1,0 < a,y,< 1 and —log(-a,y,+ 1) + a,y,+ b, — b, > 0.
Combining the third inequality and Lemma 9 (i) yields

-a,y,— b, +b,< E,0). (29)
Since £,(0) > 0and &, is strictly increasing,
52_1(52(0)) =0= El(_alya_bl""bz) < 51(52(0)) (30)

Lemma 11 gives us that
£ (<log(-a,y,+ 1)) < -log(—a,y,+ 1 +a,y,+ b, —b,= E, ' (~log(—a,y,+ 1). (31
Therefore (29), (30) and (31) together imply that there exists a unique A,* € (£,(0),—log(—a,y,+ 1))
satisfying £,(1,*) = £,71(1,*). Hence, we obtain
S, NS, ={C1* 1,9},
where 1,% = £,(1,%).
(v): Suppose that 0 < @,y, < 1 anda,y,= 1. Applying Lemma 9 (ii) and Lemma 10, we get

-a,y,— b, +b,< £,000 < —log(—a,y,+ 1 +ayy,— b, +b,. (32)
Then, by the monotonicity of &,
E,(EN0)) =0= £ (—a,y,— b, +b,) < E,(E,(0)). (33)

In addition, —log(—a,y,+ 1) + a,y,— b, + b, > 0 implies that
£,(-log(-a,y,+ 1 +a,y,— b, + b,)
—log(-a,y,+ D

+
—log(—a,y,+1) + Hhra, (1 = e~ log(—a ya+D+ ayya—by +by)

@

£,(~log(~a,y,+ 1 +a,y,— b, +b,) (34)
Combining (32), (33) and (34), we conclude that there exists a unique 1,* € (£,(0),—log(~a,y,+ 1) +
a,y,— b, +b,) satisfying £,(1,*) = £,7'(1,*). Therefore,

S, NS, ={(A.% 1,93,
where 1,* = £,(1,%).
(vi): Finally, we consider the case where botha,y, = 1 and a,y,> 1 hold. By Lemma 9 Gi),

—a,y,— b, + b, < E,0).
It is obvious that 1 — @, y, < e ©@¥a* 01~ b2 Therefore, Lemma 12 tells us that

A

1 1
y,=—+— = the game (7) has no Nash equilibria.
a; a4
1 1 . e
y,=—+— = The game (7) has a unique Nash Equilibrium.
a, a,
Thus we have proved the theorem. O

1
It may be worth pointing out in passing how both players behave in the case y = — + — . If a strategy
a; a,

A 50 is picked by power producer 2, power producer 1 selects the strategy 1,,: = &,7'(1,,). However,
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then A,,:= &,7'(1,,) maximizes the payoff of producer 2, so producer 2 resets its strategy to A ,;. After
that, producer 1 changes its strategy to A, := &,7'(1,,), which again increases the payoff. This process is
repeated again and again by both players, and two sequences { A, ,} and { 1, 1} are inductively defined. From
the proof of Theorem 2, it is obvious that both sequences are strictly increasing and become arbitrarily large as
k becomes large. Thus both supply functions move upwards, and the marketwide supply curve shifts to the left.
Though the reality is that there is a cap on the shift, the conditions allow a situation in which it is easy to raise
the spot electricity price.

Corollary 3
Leta, = a, = a and b, = b, = b. Then the non-cooperative game (7) has a Nash equilibrium if and only if

Ya <7, in which case the Nash equilibrium is unique and

L= (A% 1,9 = (—log(l—%), —log(l— a;“)).

Furthermore, the equilibrium spot price is

0 (v, 1%) = — Z
( (35)

1-— dya)z ¢
2

4. Summary and Conclusions

We consider an asymmetric duopoly model, in which the electricity demand is stochastic, and each firm
strategically chooses their supply function to maximize the a-quantile of the future profit distribution. From this
model, we obtained a necessary and sufficient condition for the existence of a Nash equilibrium, and show the
uniqueness of this equilibrium. Furthermore, we have presented a quasi-explicit form of the equilibrium, which
is described in the proof of Theorem 2. Since this model is an extended version of a previous model by Tezuka
and Ishii [18], Corollary 3 corresponds to the results from that paper. While we have derived some fundamental
properties of this model, a full analysis of the equilibrium is left for future investigation.
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